Skip to main content

8


Access Answers of Maths NCERT Class 10 Chapter 8 – Introduction to Trigonometry


Class 10 Maths Chapter 8 Exercise 8.1 Page: 181

1. In ∆ ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine:
(i) sin A, cos A
(ii) sin C, cos C
Solution:
In a given triangle ABC, right angled at B = ∠B = 90°
Given: AB = 24 cm and BC = 7 cm
According to the Pythagoras Theorem,
In a right- angled triangle, the squares of the hypotenuse side is equal to the sum of the squares of the other two sides.
By applying Pythagoras theorem, we get
AC2=AB2+BC2
AC2 (24)2+72
AC2 =(576+49)
AC2 = 625cm2
Therefore, AC = 25 cm
ncert solutions for class 10 maths chapter 8 fig 73
2. In Fig. 8.13, find tan P – cot R
ncert solutions for class 10 maths chapter 8 fig 2
3. If sin A = 3/4 , Calculate cos A and tan A.
Solution:
ncert solutions for class 10 maths chapter 8 fig 3
4. Given 15 cot A = 8, find sin A and sec A.
Solution:
ncert solutions for class 10 maths chapter 8 fig 4
5. Given sec θ = 13/12 Calculate all other trigonometric ratios
Solution:
ncert solutions for class 10 maths chapter 8 fig 5
6. If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠ A = ∠ B.
Solution:
Let us assume the triangle ABC in which CD⊥AB
Give that the angles A and B are acute angles, such that
Cos (A) = cos (B)
As per the angles taken, the cos ratio is written as
AD/AC = BD/BC
Now, interchange the terms, we get
AD/AC = BD/BC
Let take a constant value
AD/AC = AC/BC = k
Now consider the equation as
AD = k BD …(1)
AC = K BC …(2)
By applying Pythagoras theorem in △CAD and △CBD we get,
CD2 = BC2 – BD… (3)
CD2=AC2−AD2 ….(4)
From the equations (3) and (4) we get,
AC2−AD2=BC2−BD2
Now substitute the equations (1) and (2) in (3) and (4)
K2(BC2−BD2)=(BC2−BD2) k2=1
Putting this value in equation, we obtain
AC = BC
∠A=∠B (Angles opposite to equal side are equal-isosceles triangle)
7. If cot θ = 7/8, evaluate :
(i) (1+sinθ)(1-sinθ) / (1+cosθ)(1-cosθ)
(ii) cot2 θ
Solution:
Let us assume a △ABC in which  ∠B=90° and ∠C= θ
ncert solutions for class 10 maths chapter 8 fig 6
8. If 3 cot A = 4, check whether 1tan2A1+tan2A = cos2 A – sin A or not.
ncert solutions for class 10 maths chapter 8 fig 7
9. In triangle ABC, right-angled at B, if tan A =1/√ 3.Find the value of:
(i) sin A cos C + cos A sin C
(ii) cos A cos C – sin A sin C
ncert solutions for class 10 maths chapter 8 fig 8
10. In ∆ PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P
ncert solutions for class 10 maths chapter 8 fig 9
11. State whether the following are true or false. Justify your answer.
(i) The value of tan A is always less than 1.
(ii) sec A = 12/5 for some value of angle A.
(iii)cos A is the abbreviation used for the cosecant of angle A.
(iv) cot A is the product of cot and A.
(v) sin θ = 4/3 for some angle θ
ncert solutions for class 10 maths chapter 8 fig 10

Exercise 8.2 Page 187

ncert solutions for class 10 maths chapter 8 fig 11
ncert solutions for class 10 maths chapter 8 fig 12
ncert solutions for class 10 maths chapter 8 fig 13
ncert solutions for class 10 maths chapter 8 fig 14
ncert solutions for class 10 maths chapter 8 fig 15
2. Choose the correct option and justify your choice :
(i) 2tan 30°/1+tan230° =
(A) sin 60°            (B) cos 60°          (C) tan 60°            (D) sin 30°
(ii) 1-tan245°/1+tan245° =
(A) tan 90°            (B) 1                    (C) sin 45°            (D) 0
(iii)  sin 2A = 2 sin A is true when A =
(A) 0°                   (B) 30°                  (C) 45°                 (D) 60°
(iv) 2tan30°/1-tan230° =
(A) cos 60°          (B) sin 60°             (C) tan 60°           (D) sin 30°
ncert solutions for class 10 maths chapter 8 fig 16
3. If tan (A + B) =√3 and tan (A – B) =1/√3,0° < A + B ≤ 90°; A > B, find A and B.
Solution:
tan (A + B) = √3
Since √3 = tan 60°
Now substitute the degree value
⇒ tan (A + B) = tan 60°
(A + B) = 60° … (i)
The above equation is assumed as equation (i)
tan (A – B) = 1/√3
Since 1/√3 = tan 30°
Now substitute the degree value
⇒ tan (A – B) = tan 30°
(A – B) = 30° … equation (ii)
Now add the equation (i) and (ii), we get
A + B + A – B = 60° + 30°
Cancel the terms B
2A = 90°
A= 45°
Now, substitute the value of A in equation (i) to find the value of B
45° + B = 60°
B = 60° – 45°
B = 15°
Therefore A = 45° and B = 15°
4. State whether the following are true or false. Justify your answer.
(i) sin (A + B) = sin A + sin B.
(ii) The value of sin θ increases as θ increases.
(iii) The value of cos θ increases as θ increases.
(iv) sin θ = cos θ for all values of θ.
(v) cot A is not defined for A = 0°.
ncert solutions for class 10 maths chapter 8 fig 17

Class 10 Maths Chapter 8 Exercise 8.3 Page: 189

1. Evaluate :
(i) sin 18°/cos 72°        
(ii) tan 26°/cot 64°      
(iii)  cos 48° – sin 42°      
(iv)  cosec 31° – sec 59°
Solution:
(i) sin 18°/cos 72°
To simplify this, convert the sin function into cos function
We know that, 18° is written as 90° – 18°, which is equal to the cos 72°.
= sin (90° – 18°) /cos 72°
Substitute the value, to simplify this equation
= cos 72° /cos 72° = 1
(ii) tan 26°/cot 64°
To simplify this, convert the tan function into cot function
We know that, 26° is written as 90° – 36°, which is equal to the cot 64°.
= tan (90° – 36°)/cot 64°
Substitute the value, to simplify this equation
= cot 64°/cot 64° = 1
(iii) cos 48° – sin 42°
To simplify this, convert the cos function into sin function
We know that, 48° is written as 90° – 42°, which is equal to the sin 42°.
= cos (90° – 42°) – sin 42°
Substitute the value, to simplify this equation
= sin 42° – sin 42° = 0
(iv) cosec 31° – sec 59°
To simplify this, convert the cosec function into sec function
We know that, 31° is written as 90° – 59°, which is equal to the sec 59°.
= cosec (90° – 59°) – sec 59°
Substitute the value, to simplify this equation
= sec 59° – sec 59° = 0
2.  Show that :
(i) tan 48° tan 23° tan 42° tan 67° = 1
(ii) cos 38° cos 52° – sin 38° sin 52° = 0
Solution:
(i) tan 48° tan 23° tan 42° tan 67°
Simplify the given problem by converting some of the tan functions to the cot functions
We know that tan 48° = tan (90° – 42°) = cot 42°
tan 23° = tan (90° – 67°) = cot 67°
= tan (90° – 42°) tan (90° – 67°) tan 42° tan 67°
Substitute the values
= cot 42° cot 67° tan 42° tan 67°
= (cot 42° tan 42°) (cot 67° tan 67°) = 1×1 = 1
(ii) cos 38° cos 52° – sin 38° sin 52°
Simplify the given problem by converting some of the cos functions to the sin functions
We know that cos 38° = cos (90° – 52°) = sin 52°
cos 52°= cos (90°-38°) = sin 38°
= cos (90° – 52°) cos (90°-38°) – sin 38° sin 52°
Substitute the values
= sin 52° sin 38° – sin 38° sin 52° = 0
3. If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A.
Solution:
tan 2A = cot (A- 18°)
We know that tan 2A = cot (90° – 2A)
Substitute the above equation in the given problem
⇒ cot (90° – 2A) = cot (A -18°)
Now, equate the angles,
⇒ 90° – 2A = A- 18° ⇒ 108° = 3A
A = 108° / 3
Therefore, the value of A = 36°
4.  If tan A = cot B, prove that A + B = 90°.
Solution:
tan A = cot B
We know that cot B = tan (90° – B)
To prove A + B = 90°, substitute the above equation in the given problem
tan A = tan (90° – B)
A = 90° – B
A + B = 90°
Hence Proved.
5. If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A.
Solution:
sec 4A = cosec (A – 20°)
We know that sec 4A = cosec (90° – 4A)
To find the value of A , substitute the above equation in the given problem
cosec (90° – 4A) = cosec (A – 20°)
Now, equate the angles
90° – 4A= A- 20°
110° = 5A
A = 110°/ 5 = 22°
Therefore, the value of A = 22°
6. If A, B and C are interior angles of a triangle ABC, then show that
    sin (B+C/2) = cos A/2
Solution:
We know that, for a given triangle, sum of all the interior angles of a triangle is equal to 180°
A + B + C = 180° ….(1)
To find the value of (B+ C)/2, simplify the equation (1)
⇒ B + C = 180° – A
⇒ (B+C)/2 = (180°-A)/2
⇒ (B+C)/2 = (90°-A/2)
Now, multiply both sides by sin functions, we get
⇒ sin (B+C)/2 = sin (90°-A/2)
Since sin (90°-A/2) = = cos A/2, the above equation is equal to
sin (B+C)/2 = cos A/2
Hence proved.
7. Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.
Solution:
Given:
sin 67° + cos 75°
In term of sin as cos function and cos as sin function, it can be written as follows
sin 67° = sin (90° – 23°)
cos 75° = cos (90° – 15°)
= sin (90° – 23°) + cos (90° – 15°)
Now, simplify the above equation
= cos 23° + sin 15°
Therefore, sin 67° + cos 75° is also expressed as cos 23° + sin 15°

Class 10 Maths Chapter 8 Exercise 8.4 Page: 193

1. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
ncert solutions for class 10 maths chapter 8 fig 19
2. Write all the other trigonometric ratios of ∠A in terms of sec A.
Solution:
ncert solutions for class 10 maths chapter 8 fig 20

3. Evaluate :
(i) (sin263° + sin227°)/(cos217° + cos273°)
(ii)  sin 25° cos 65° + cos 25° sin 65°
Solution:
(i) (sin263° + sin227°)/(cos217° + cos273°)
To simplify this, convert some of the sin functions into cos functions and cos function into sin function and it becomes,
= [sin2(90°-27°) + sin227°] / [cos2(90°-73°) + cos273°)]
= (cos227° + sin227°)/(sin227° + cos273°)
= 1/1 =1                       (since sin2A + cos2A = 1)
Therefore, (sin263° + sin227°)/(cos217° + cos273°) = 1
(ii) sin 25° cos 65° + cos 25° sin 65°
To simplify this, convert some of the sin functions into cos functions and cos function into sin function and it becomes,
= sin(90°-25°) cos 65° + cos (90°-65°) sin 65°
= cos 65° cos 65° + sin 65° sin 65°
= cos265° + sin265° = 1 (since sin2A + cos2A = 1)
Therefore, sin 25° cos 65° + cos 25° sin 65° = 1
4. Choose the correct option. Justify your choice.
(i) 9 sec2A – 9 tan2A =
(A) 1                 (B) 9              (C) 8                (D) 0
(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ)
(A) 0                 (B) 1              (C) 2                (D) – 1
(iii) (sec A + tan A) (1 – sin A) =
(A) sec A           (B) sin A        (C) cosec A      (D) cos A
(iv) 1+tan2A/1+cot2A = 
      (A) secA                 (B) -1              (C) cot2A                (D) tan2A
ncert solutions for class 10 maths chapter 8 fig 21
(iv) (D) is correct.
Justification:
We know that,
tan2A =1/cot2A
Now, substitute this in the given problem, we get
1+tan2A/1+cot2A
= (1+1/cot2A)/1+cot2A
= (cot2A+1/cot2A)×(1/1+cot2A)
= 1/cot2A = tan2A
So, 1+tan2A/1+cot2A = tan2A
5. Prove the following identities, where the angles involved are acute angles for which the
expressions are defined.
(i) (cosec θ – cot θ)= (1-cos θ)/(1+cos θ)
(ii) cos A/(1+sin A) + (1+sin A)/cos A = 2 sec A
(iii) tan θ/(1-cot θ) + cot θ/(1-tan θ) = 1 + sec θ cosec θ
     [Hint : Write the expression in terms of sin θ and cos θ]
(iv) (1 + sec A)/sec A = sin2A/(1-cos A)  
     [Hint : Simplify LHS and RHS separately]
(v) ( cos A–sin A+1)/( cos A +sin A–1) = cosec A + cot A, using the identity cosec2A = 1+cot2A.
(vi) √[1+sinA/1-sinA] = sec A + tan A
(vii) (sin θ – 2sin3θ)/(2cos3θ-cos θ) = tan θ
(viii) (sin A + cosec A)+ (cos A + sec A)2 = 7+tan2A+cot2A
(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)
[Hint : Simplify LHS and RHS separately]
(x) (1+tan2A/1+cot2A) = (1-tan A/1-cot A)2 = tan2A

ncert solutions for class 10 maths chapter 8 fig 23
ncert solutions for class 10 maths chapter 8 fig 24
ncert solutions for class 10 maths chapter 8 fig 25
ncert solutions for class 10 maths chapter 8 fig 26
ncert solutions for class 10 maths chapter 8 fig 27

Comments

Popular posts from this blog

13

Access Answers of Maths NCERT Class 10 Chapter 13 – Surface Areas and Volumes Class 10 Maths Chapter 13 Exercise: 13.1 (Page No: 244) 1. 2 cubes each of volume 64 cm 3  are joined end to end. Find the surface area of the resulting cuboid. Answer : The diagram is given as: Given, The Volume (V) of each cube is = 64 cm 3 This implies that a 3  = 64 cm 3 ∴ a = 4 cm Now, the side of the cube = a = 4 cm Also, the length and breadth of the resulting cuboid will be 4 cm each. While its height will be 8 cm. So, the surface area of the cuboid = 2(lb + bh + lh) = 2(8×4 + 4×4 + 4×8) cm 2 = 2(32 + 16 + 32) cm 2 = (2 × 80) cm 2  = 160 cm 2 2. A vessel is in the form of a hollow hemisphere mounted by a hollow cylinder. The diameter of the hemisphere is 14 cm and the total height of the vessel is 13 cm. Find the inner surface area of the vessel. Answer: The diagram is as follows: Now, the given parameters are: The diameter of the hemisphere...

12

Access Answers of Maths NCERT Class 10 Chapter 12 – Areas Related to Circles Class 10 Maths Chapter 12 Exercise: 12.1 (Page No: 230) 1. The radii of two circles are 19 cm and 9 cm respectively. Find the radius of the circle which has a circumference equal to the sum of the circumferences of the two circles. Solution: The radius of the 1st circle = 19 cm (given) ∴ Circumference of the 1st circle = 2π × 19 = 38π cm The radius of the 2nd circle = 9 cm (given) ∴ Circumference of the circle = 2π × 9 = 18π cm So, The sum of the circumference of two circles = 38π + 18π = 56π cm Now, let the radius of the 3rd circle = R ∴ The circumference of the 3rd circle = 2πR It is given that sum of the circumference of two circles = circumference of the 3rd circle Hence, 56π = 2πR Or, R = 28 cm. 2. The radii of two circles are 8 cm and 6 cm respectively. Find the radius of the circle having area equal to the sum of the areas of the two circles. Solution: Radius of 1s...

Arithmatic progreassion.

Introduction to AP Sequences, Series and Progressions A  sequence  is a finite or infinite list of numbers following a certain pattern. For example - 1,2,3,4,5… is the sequence is infinite.sequence of natural numbers. A  series  is the sum of the elements in the corresponding sequence. For example - 1+2+3+4+5….is the series of natural numbers. Each number in a sequence or a series is called a term. A  progression  is a sequence in which the general term can be can be expressed using a mathematical formula. Arithmetic Progression An arithmetic progression (A.P) is a progression in which the  difference  between two  consecutive  terms is constant. Example: 2,5,8,11,14.... is an arithmetic progression. Common Difference The difference between two consecutive terms in an AP, ( which is constant ) is the " common difference " (d)  of an A.P. ...