Skip to main content

Quadratic equation.

Introduction to Quadratic Equations

Quadratic Polynomial

A polynomial of the form ax2+bx+c, where a,b and c are real numbers and a0 is called a quadratic polynomial.

Quadratic Equation

When we equate a quadratic polynomial to a constant, we get a quadratic equation.
Any equation of the form p(x)=c, where p(x) is a polynomial of degree 2 and c is a constant, is a quadratic equation.

Standard form of a Quadratic Equation

The standard form of a quadratic equation is ax2+bx+c=0, where a,b and c are real numbers and a0.
‘a’ is the coefficient of x2. It is called the quadratic coefficient. ‘b’ is the coefficient of x. It is called the linear coefficient. ‘c’ is the constant term.

Solving QE by Factorisation

Roots of a Quadratic equation

The values of x for which a quadratic equation is satisfied are called the roots of the quadratic equation.

If α is a root of the quadratic equation ax2+bx+c=0,then, aα2+bα+c=0.

A quadratic equation can have two distinct roots, two equal roots or real roots may not exist.

Graphically, the roots of a quadratic equation are the points where the graph of the quadratic polynomial cuts the x-axis.

Graph of a Quadratic Equation


In the above figure, -2 and 2 are the roots of the quadratic equation x24=0
Note:
  • If the graph of the quadratic polynomial cuts the x-axis at two distinct points, then it has real and distinct roots.
  • If the graph of the quadratic polynomial touches the x-axis, then it has real and equal roots.
  • If the graph of the quadratic polynomial does not cut or touch the x-axis then it does not have any real roots.

Solving a Quadratic Equation by Factorization method

Consider a quadratic equation 2x25x+3=0
2x22x3x+3=0
This step is splitting the middle term
We split the middle term by finding two numbers (-2 and -3) such that their sum is equal to the coefficient of x and their product is equal to the product of the coefficient of x2 and the constant.
(-2) + (-3) = (-5)
And (-2) × (-3) = 6
2x22x3x+3=0
2x(x1)3(x1)=0
(x1)(2x3)=0
In this step, we have expressed the quadratic polynomial as a product of its factors.
Thus, x = 1 and x = 32 are the roots of the given quadratic equation.
This method of solving a quadratic equation is called the factorisation method. 

 

Solving QE by Completing the Square

Solving a Quadratic Equation by Completion of squares method

In the method of completing the squares, the quadratic equation is expressed in the form (x±k)2=p2.

Consider the quadratic equation 2x28x=10
(i) Express the quadratic equation in standard form.
2x28x10=0

(ii) Divide the equation by the coefficient of x2 to make the coefficient of x2 equal to 1.
x24x5=0

(iii) Add square of half of the coefficient of x to both sides of the equation to get an expression of the form x2±2kx+k2.
(x24x+4)5=0+4

(iv) Isolate the above expression, (x±k)2 on the LHS to obtain an equation of the form (x±k)2=p2
(x2)2=9

(v) Take the positive and negative square roots.
x2=±3x=1 or x=5

 

Solving QE Using Quadratic Formula

Quadratic Formula

Quadratic Formula is used to directly obtain the roots of a quadratic equation from the standard form of the equation.

For the quadratic equation ax2+bx+c=0,
x=b±b24ac2a

By substituting the values of a,b and c, we can directly get the roots of the equation.

Discriminant

For a quadratic equation of the form ax2+bx+c=0, the expression b24ac is called the discriminant, (denoted by D), of the quadratic equation.
The discriminant determines the nature of roots of the quadratic equation based on the coefficients of the quadratic polynomial.

Solving using Quadratic Formula when D>0

Solve 2x27x+3=0 using the quadratic formula.
(i) Identify the coefficients of the quadratic polynomial. a = 2,b = -7,c = 3
(ii) Calculate the discriminant, b24ac
D=(7)24×2×3=25
D> 0, therefore, the roots are distinct.
(iii) Substitute the coefficients in the quadratic formula to find the roots
x=(7)±(7)24×2×32×2x=7±54
x=3 and x=12 are the roots.

 

Nature of Roots

Nature Of Roots

Based on the value of the discriminant, D=b24ac, the roots of a quadratic equation can be of three types.

Case 1: If D>0, the equation has two distinct real roots.

Case 2: If D=0, the equation has two equal real roots.

Case 3: If D<0, the equation has no real roots.

 

Be More Curious

Graphical Representation of a Quadratic Equation

The graph of a quadratic polynomial is a parabola. The roots of a quadratic equation are the points where the parabola cuts the x-axis i.e. the points where the value of the quadratic polynomial is zero.

In the above figure, -2 and -3 are the roots of the quadratic equation
x2+5x+6=0.

For a quadratic polynomial ax2+bx+c,

If a>0, the parabola opens upwards.
If a<0, the parabola opens downwards.
If a = 0, the polynomial will become a first-degree polynomial and its graph is linear.

The discriminant, D=b24ac

Nature of graph for different values of D.

If D>0, the parabola cuts the x-axis at exactly two distinct points. The roots are distinct. This case is shown in the above figure in a,
where the quadratic polynomial cuts the x-axis at two distinct points.

If D=0, the parabola just touches the x-axis at one point and the rest of the parabola lies above or below the x-axis. In this case, the roots are equal.
This case is shown in the above figure in b, where the quadratic polynomial touches the x-axis at only a single point.

If D<0, the parabola lies entirely above or below the x-axis and there is no point of contact with the x-axis. In this case, there are no real roots.
This case is shown in the above figure in c, where the quadratic polynomial neither cuts nor touches the x-axis.

Formation of a quadratic equation from it roots

To find out the standard form of a quadratic equation when the roots are given:
Let α and β be the roots of the quadratic equation ax2+bx+c=0. Then,
(xα)(xβ)=0
On expanding, we get,
x2(α+β)x+αβ=0, which is the standard form of the quadratic equation. Here, a=1,b=(α+β) and c=αβ.

Sum and Product of roots of a Quadratic equation

Let α and β be the roots of the quadratic equation ax2+bx+c=0. Then,
Sum of roots =α+β=ba
Product of roots =αβ=ca

Comments

Popular posts from this blog

13

Access Answers of Maths NCERT Class 10 Chapter 13 – Surface Areas and Volumes Class 10 Maths Chapter 13 Exercise: 13.1 (Page No: 244) 1. 2 cubes each of volume 64 cm 3  are joined end to end. Find the surface area of the resulting cuboid. Answer : The diagram is given as: Given, The Volume (V) of each cube is = 64 cm 3 This implies that a 3  = 64 cm 3 ∴ a = 4 cm Now, the side of the cube = a = 4 cm Also, the length and breadth of the resulting cuboid will be 4 cm each. While its height will be 8 cm. So, the surface area of the cuboid = 2(lb + bh + lh) = 2(8×4 + 4×4 + 4×8) cm 2 = 2(32 + 16 + 32) cm 2 = (2 × 80) cm 2  = 160 cm 2 2. A vessel is in the form of a hollow hemisphere mounted by a hollow cylinder. The diameter of the hemisphere is 14 cm and the total height of the vessel is 13 cm. Find the inner surface area of the vessel. Answer: The diagram is as follows: Now, the given parameters are: The diameter of the hemisphere...

12

Access Answers of Maths NCERT Class 10 Chapter 12 – Areas Related to Circles Class 10 Maths Chapter 12 Exercise: 12.1 (Page No: 230) 1. The radii of two circles are 19 cm and 9 cm respectively. Find the radius of the circle which has a circumference equal to the sum of the circumferences of the two circles. Solution: The radius of the 1st circle = 19 cm (given) ∴ Circumference of the 1st circle = 2π × 19 = 38π cm The radius of the 2nd circle = 9 cm (given) ∴ Circumference of the circle = 2π × 9 = 18π cm So, The sum of the circumference of two circles = 38π + 18π = 56π cm Now, let the radius of the 3rd circle = R ∴ The circumference of the 3rd circle = 2πR It is given that sum of the circumference of two circles = circumference of the 3rd circle Hence, 56π = 2πR Or, R = 28 cm. 2. The radii of two circles are 8 cm and 6 cm respectively. Find the radius of the circle having area equal to the sum of the areas of the two circles. Solution: Radius of 1s...

Arithmatic progreassion.

Introduction to AP Sequences, Series and Progressions A  sequence  is a finite or infinite list of numbers following a certain pattern. For example - 1,2,3,4,5… is the sequence is infinite.sequence of natural numbers. A  series  is the sum of the elements in the corresponding sequence. For example - 1+2+3+4+5….is the series of natural numbers. Each number in a sequence or a series is called a term. A  progression  is a sequence in which the general term can be can be expressed using a mathematical formula. Arithmetic Progression An arithmetic progression (A.P) is a progression in which the  difference  between two  consecutive  terms is constant. Example: 2,5,8,11,14.... is an arithmetic progression. Common Difference The difference between two consecutive terms in an AP, ( which is constant ) is the " common difference " (d)  of an A.P. ...